[Quantum Information] Quantum Error Correction (QEC)

Quantum Error Correction (QEC)


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Quantum Error Correction (QEC)

  • Problem: the quantum computer cannot be isolated from the environment, therefore, operations can be faulty.
    This leads to errors in quantum gates, initial state preparation, measurements.

  • classical: redundancy (by copying)

    • but in quantum cases, by measuring α|0+β|1 will lose the information about α and β
    • even worse for entangled state α|000+β|111
  • Quantum challenges:

    • not only bit flip error, but also phase flip or both
    • errors continuous U(t)=eiHt
  • Effective error model: Stochastic independently distributed X,Y,Z errors with probability p

  • Conceptual setting of a quantum error correcting code

3-qubit code

  • Idea: distribute one qubit |ψ=α|0+β|1 over 3 physical qubits.
  • basis state / codewords |0=|000,|1=|111

  • span codespace
    |ψL=α|0+β|1=α|000+β|111
  1. Encoding: C1NOT2 and C1NOT3 on |ψ|0|0|ψL
  2. possible occurrence of errors:
    • e.g. bit flip error
      α|000+β|111X1α|100+β|011
      • by measuring: collapse onto |011 or |100 and lose the information about α and β
    • Solution indirect measurement via ancilla qubits.

      Apply C1NOT3,C2NOT3 on state |a|b|0C and measuring |0C
      where |0C is an ancilla state.
      If |ab=|00 or |ab=|11|0C will not change.  even parity
      If |ab=|01 or |ab=|10|0C will change to |1C odd parity
    • general consideration:
      consider n-qubit operation U with eigenvalues ±1
      |0|ψH11/2(|0+|1)|ψControlledU1/2|0|ψ+1/2|1U|ψH11/2(|0+|1)|ψ+1/2(|0|1)U|ψ=|0(1/2)(I+U)|ψ+|1(1/2)(IU)|ψ
      where (1/2)(I±U) is P±: projector operator on the ±1 eigenspace of U
       realize a measuremnt of U
      For U=Z1Z2
       This is a contrast to measure Z1 and Z2 individually.
    • Two ancilla qubits
      |ψ|00error|ψ|00|00ancillaC1NOT4,C2NOT4,C2NOT5,C3NOT5|ψ|00Z1Z2|0Z2Z3|0correction|ψ|00
      Z1Z2 Z2Z3 error/correction
      1 1 I
      1 1 X1
      1 1 X2
      1 1 X3

    correct only one X-error on any of the gate
    If there are two X-errors, then QEC fails
    If there are three, then it cannot be detected

  • 3-qubit code is not a complete code
  • Robustness 3-qubit code better than one qubit?
    • error model:
      • bit flip error: p
      • no error: 1p
    • probability to correct:
      pcorrect=(1p)3+3p(1p)2
      no error on 3 qubits + the probability of one X error
      pfail=3p2(1p)+p3
    • For p<1/2pcorrect>(1p)
      where (1p) is the probability of single qubit which successes.
       3-qubit is better than single qubit.
  • How to increase robustness?
    1. 5-qubit code
      p(5)correctp(3)correct for small p
    2. concatenation
      Encode codes in codes in codes…
      p(n)fail=3(p(n1)fail)22(p(n1)fail)33(p(n1)fail)2
      For n layers of concatenation:
      p(n)fail13(3p)2n
      pfail0 for p1/3


      double-exponentially fast in the number of layers n

Stabilize Formalism

  • Idea: Fix and describe quantum state by set of commuting observations rather than explicit quantum state vector.
  • allows us to describe a larger class of multi-qubit states.
  • Example:
    • Stabilizer state: |Φ+=1/2(|00+|11)
    • Stabilizer: S1=Z1Z2,S2=X1X2
    • S1S2=S2S1, they can commute with each other
      i.e. [S1,S2]=0
    • |Φ+ has unique eigenstate |ψ
      S1|ψ=|ψS2|ψ=|ψ
    • S1,S2 generates a 22=4 Abelian group:
      {I,Z1Z2,X1X2,Y1Y2}
  • Generalization of n-qubit
    • n generators S1,...,Sn
    • 2n stabilizer operators
    • Si|ψ=|ψ,  i
  • Stabilizer QEC code:
    • {Si} with [Si,Sj]=0,  i,j
    • OL: logical operatoers ZL,XL, with [OL,Si]=0
    • {ZL,XL}=0
  • Quantum hamming bound:
    • How large must a H space be, so that we can accomadate QEC codes:
      • n-qubit, k encoded for up to t errors.
      • if j errors, jt
        tj=0(nj)3j2k2n called Quantum Hamming Bound
        (nj):j errors occur in n-qubits
        3j: X,Y,Z errors
        2k: error codespace to an 2k dimension orthogonal subspace
      • for 1 logical qubit k=1, 1 arbitrary correctable error t=1
        2(1+3n)2n
        n5 qubits needed for smallest complete code.
  • 9-qubit shor code:
    • |ψL=α(|000+|111)(|000+|111)(|000+|111)/8+β(|000|111)(|000|111)(|000|111)/8
    • Bit flip errors Xi
      can be detected by {Z1Z2,Z2Z3,Z4Z5,Z5Z6,Z7Z8,Z8Z9}
    • phase flip errors Zi
      can be detected by {X1X2X3X4X5X6,X4X5X6X7X8X9}
      detect the sign of any of three qubits.
    • after detecting a phase flip in the first block, we don’t know which qubit
      but we can applying Z1-correction
      we get the same correct state.
    • Property:
      • complete code
      • degenerate code: several errors have the same effect on logic state e.g. Z1,Z2
      • Correction works: attempt + error = identity or stabilizer

Quantum Fault Tolerance

  • Problem: Errors can occur before encoding or during encoding
    • uncontrolled error propagation
    • example (C1NOT2)X1=X1X2(C1NOT2)
      X error propagates from a controlled qubit through CNOT gate onto a target qubit
      ( propagate errors from X1 to X2)



  • Fault Tolerant quantum circuit construction: avoid error spread, infection
  • 7-qubit scheme code


  • possible, but requires non-local gates, resource overhead

Topological QEC

  • idea: quantum information spread out globally, to protect against local errors.
  • no concatenation
  • increase the size of lattice to increase robustness
  • no braiding for gates

Kitaev’s toric code

  • L×L square lattice with physical qubits located on the edges


  • Codespace: S(i)Z|ψ=S(j)X|ψ=|ψ
  • Periodic boundry conditions: lattice is embedded on the surface of a torus.  Toric code


  • number of qubits and operatoins:
    • L2 plaquette  2L2 physics qubits
    • L2 plaquette  L2 Z-stabalizer
    • L2 plaquette  L2 X-stabalizer
  • not all stabilizers are independent:
    iS(i)Z=IL21iS(i)Z=S(L2)Z
    • only L21 independent Z(X)-stabalizers.
    • k= number of logic qubits=(#physical qubits)(#independent stabalizer constrains)=2 (encoded qubits)

    Topological property: independent of size, lattice structure

  • minimum-weight perfect matching (MWPM)
  • logic quantum computations: transversal gates
    • Transversality: logic operations = bitwise physical operations (local operations)
      Hn=H1H2...Hn
      if one Hi is wrong, only effect one qubit  Fault Tolerant

Readings
Nielsen and Chuang
    10 Quantum error-correction

留言

這個網誌中的熱門文章