[Quantum Information] Quantum key distribution

  Quantum Key Distribution


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Quantum key distribution

  • Goal:
    • Creation of a private key over a public channel (not sending messages)
  • Properties:
    • needed: a quantum channel for transmitting qubits with low error rate
    • detecting eavesdropping
    • security is guaranteed by laws of quantum physics
  • Fundamental priciple: No information without disturbing
    • No-cloning Theorem
    • Disturbance
      • Attempting to distinguish between Non-orthogonal states
        gaining information \(\Rightarrow\) disturbance
      • proof:
        • assume \(|\psi\rangle\) and \(|\phi\rangle\)'s information can be obtained by an unitary \(U\) and an ancillary state \(|u\rangle\)
        • \[|\psi\rangle|u\rangle\xrightarrow[]{U}|\psi\rangle|v\rangle \\ |\phi\rangle|u\rangle\xrightarrow[]{U}|\phi\rangle|v'\rangle\]
        \[ \langle\psi|\phi\rangle\langle u|u\rangle=\langle\psi|\phi\rangle\langle v|v'\rangle \]
        since \(|\psi\rangle\) and \(|\phi\rangle\) are non-orthogonal\(\langle\psi|\phi\rangle\neq0\)
        • \(\therefore\langle v|v'\rangle\)
          \(v, v'\) are identical
        • No information about \(|\psi\rangle\) and \(|\phi\rangle\) is obtained.

BB84: transmission of single qubit

  1. A chooses \((4+\delta)n\) bits data \(a\)

  2. A chooses \((4+\delta)n\) bits basis \(b\)
    A encodes data as

    a\b01
    0|\(0\rangle\)|\(+\rangle\)
    1|\(1\rangle\)|\(-\rangle\)
  3. A sends the resulting state to B

  4. B measures in random basis \(b'\)

    • If use \(X\)-basis measures \(\{|0\rangle,|1\rangle\}\), the outcome will be random \(0,1\)
  5. A announce \(b\)

  6. A and B compare \(b\) and \(b'\), discard \(b_i\neq b'_i\)
    with high probability there are \(2n\) bits left

  7. A select \(n\) check bits to detect eavesdropping, and tell B

  8. A and B announce check bits

no entanglement needed


BB92: entanglement-based quantum cryptography

  • A measures entangled state \(1/\sqrt{2}(|00\rangle+|11\rangle)\)
    outcome \(\{0,1\}\) will be random but perfectly correlated with B’s measurement.
    A measures \(1\Rightarrow\) B measures \(1\) if in the same basis
  • A and B measure in different basis \(\Rightarrow\) uncorrelated
  1. prepare a few Bell pairs to perform Bell test
  2. A and B measure their qubit in independently and randomly choosen bases.
  3. discard the bits measured in different basis (same basis \(\Rightarrow\) same measurement outcome)


留言

這個網誌中的熱門文章