[Quantum Information] Quantum key distribution

  Quantum Key Distribution


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Quantum key distribution

  • Goal:
    • Creation of a private key over a public channel (not sending messages)
  • Properties:
    • needed: a quantum channel for transmitting qubits with low error rate
    • detecting eavesdropping
    • security is guaranteed by laws of quantum physics
  • Fundamental priciple: No information without disturbing
    • No-cloning Theorem
    • Disturbance
      • Attempting to distinguish between Non-orthogonal states
        gaining information  disturbance
      • proof:
        • assume |ψ and |ϕ's information can be obtained by an unitary U and an ancillary state |u
        • |ψ|uU|ψ|v|ϕ|uU|ϕ|v
        ψ|ϕu|u=ψ|ϕv|v
        since |ψ and |ϕ are non-orthogonalψ|ϕ0
        • v|v
          v,v are identical
        • No information about |ψ and |ϕ is obtained.

BB84: transmission of single qubit

  1. A chooses (4+δ)n bits data a

  2. A chooses (4+δ)n bits basis b
    A encodes data as

    a\b01
    0|0|+
    1|1|
  3. A sends the resulting state to B

  4. B measures in random basis b

    • If use X-basis measures {|0,|1}, the outcome will be random 0,1
  5. A announce b

  6. A and B compare b and b, discard bibi
    with high probability there are 2n bits left

  7. A select n check bits to detect eavesdropping, and tell B

  8. A and B announce check bits

no entanglement needed


BB92: entanglement-based quantum cryptography

  • A measures entangled state 1/2(|00+|11)
    outcome {0,1} will be random but perfectly correlated with B’s measurement.
    A measures 1 B measures 1 if in the same basis
  • A and B measure in different basis  uncorrelated
  1. prepare a few Bell pairs to perform Bell test
  2. A and B measure their qubit in independently and randomly choosen bases.
  3. discard the bits measured in different basis (same basis  same measurement outcome)


留言

這個網誌中的熱門文章