[Quantum Information] Quantum teleportation

  Quantum teleportation


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Quantum teleportation

Protocol


  1. The Bell state shared by A and B is available

    • A:1/2(|0A0B+|1A1B)
    • B:1/2(|0A0B+|1A1B)
  2. A interacts her qubit with the (unknown) state |ψ

    • assume that |ψ=α|0+β|1

    A:(α|0+β|1)(1/2(|0A0B+|1A1B))C1NOTA1/2[α|0(|0A0B+|1A1B)+β|1(|0A1B+|1A0B)]H11/2[α(|0+|1)(|0A0B+|1A1B)+β(|0|1)(|0A1B+|1A0B)]=|00A[1/2(α|0B+β|1B)]+|01A[1/2(α|1B+β|0B)]+|10A[1/2(α|0Bβ|1B)]+|11A[1/2(α|1Bβ|0B)]

  3. A measures the qubits in her procession

  4. A sends the information of measurement outcome via a classical channel

  5. Depending on A's message, B applies operations to his qubit and recover |ψ

    A's outcomeB's stateB's operation
    |00Aα|0+β|1
    |01Aα|1+β|0X
    |10Aα|0β|1Z
    |11Aα|1β|0X,Z

Discussion

  • Does it allow fast-than-light communication?
    • NoA needs to send the outcome information via classical channel (limited by the spped of light).
  • Does the protocol violate the no-cloning theorem?
    • No, at the end of the protocol, only the B's qubit is in the state |ψ
      No information of |ψ is left on A's qubit (only the four basis states.)
  • Importance of quantum teleportation:
    1. fundamental property of quantum mechanics
    2. used e.g. in QEC
    3. measuremnt-based quantum computing
    4. distribution of quantum information in quantum networks

Readings
Bennett, Charles & Brassard, Gilles & Crépeau, Claude & Jozsa, Richard & Peres, Asher & Wootters, William. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters. 70. 1895-1899. 10.1103/PhysRevLett.70.1895. 

留言

這個網誌中的熱門文章