[Quantum Information] Deutsch-Jozsa Algorithm

 Deutsch-Jozsa Algorithm


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Deutsch-Jozsa Algorithm

  • Multi-qubit Deutsch Algorithm
  • Problem:
    • For N=2n, we are given an N-bit string
    • input: x{0,1}N such that either:
      1. all xi have the same value: constant
      2. N/2 of the xi are 0 and N/2 of the xi are 1: balanced
    • goal: find out whether x is constant or balanced

The query setting:

  • Can think of N-bit memory, which can access at any point of our choice (A random access memory)
  • A memory access can be done via a so-called black box, which outputs xi on input i
  • can be realized by a (n+1)-quibit unitary:
    Ox|i,b|i,bxi
  • if we set the target qubit to |
    Ox|i|(1)xi|i|
    1. Basis |i picks up the phase of (1) if xi=1, otherwise, nothing happens.
    2. target qubit remains in | (omitting)
    3. called phase oracle

    if change | to |+
    Ox|i|+|i|+
    no change depends on xi

Deutsch-Jozsa Algorithm


  1. start with |ψ0=|0n registers
  2. apply Hadamard gate to each qubit
    • 12ni{0,1}n|i
    • more generally
      |ψ1=12nj{0,1}n(1)ij|j
  3. apply a phase oracle Ox,±
    • |ψ2=12ni{0,1}n(1)xi|i
  4. apply another Hadamard gate to each qubit
    • |ψ3=12ni{0,1}n(1)xij{0,1}n(1)ij|j
    • the amplitude of |j=|0...0
    • since iOn=0 for any i{0,1}n
      12ni{0,1}n(1)xi={1if xi=0, iconstant1if xi=1, iconstant0balanced
  5. measure the final state

The probability to project onto |0...0 in the final state is 1 if x is constatnt
If x is balanced, some other outcome will be obtained.

Only one quantum query and O(n) other operations (H-gates)
but not exponential

  • classical: needs at least N/2+1 queries. (N=2n)

but more efficiently if we allow a small error probability

  • example:

    • query x at two random positions
    • output x is constant if two bits are the same
    • output x is balanced if two bits are different

    output the correct answer with probability 1 if x is constant
    output the correct answer with probability 1/2 if x is balanced
     Total probability to output the correct answer: 3/4

Bernstein-Vazirani Problem

  • Problem:
    For N=2n, we are given a bit string x{0,1}n with the property that there is some unknown bit string a{0,1}n such that xi=ia mod 2

  • goal: to find a

  • exactly the Deutsch-Jozsa Algorithm, the final measurement suprisingly yields the output a with certainty.

  • quantum:

    • deterministic
    • one query
  • classical:

    • allowed to output with a small error probability
    • n queries

Readings
Deutsch, D., & Jozsa, R. (1992). Rapid Solution of Problems by Quantum Computation.
Nielsen and Chuang
1.4.4 The Deutsch–Jozsa algorithm

留言

這個網誌中的熱門文章