[Quantum Information] Deutsch Algorithm

 Deutsch Algorithm


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Deutsch Algorithm

  • A glance of both side of the coin at the same time by integrating the coin
    (classical: at least two glance of both side)

    • relies on quantum superposition and entanglement
    • asks a partial question about a system
  • Input x:

    • x{0,1}
  • Outcome f(x):

    • f(x){0,1}
  • Problem:

    • {f(0)=f(1)constantf(0)f(1)balanced

    not interested in f(0) and f(1)

classical computation

  1. compute f(0) and f(1)
  2. compare f(0) and f(1)

Two evaluation of f
With less than two (zero, one), one can only guess f is constant or balanced

quantum computation

  • claim:
    • just one f
    • won’t (must not) obtain the information about individual value of f
  1. Use two qubits
    |x=αx|0+βx|1|y=αy|0+βy|1


    in a product state |x,y=|x|y

  2. Use 2-qubit unitary transformation Uf
    Uf|x|y|x,yf(x)

    Remark: after Uf, it may not be a product state
    |x,yf(x)|x|yf(x)

    Apply Uf twice, U2f=1 (identical)
    Uf is an unitary, Uf=Uf

    • Every application of Uf requires only one evaluation of f
  • Can we thus answer the question by a quantum algorithm that requires only a single application of Uf?

  • First try:

    • |x=|+=12(|0+|1)
      |y=|0
    • Uf|x|y=12(|0|f(0)+|1|f(1))
       state contains both function values in superposition in the second qubit and (in general) entangled with the first qubit
    • Problem: if we measure first qubit, superposition collapses with probability 1/2 to either |0|f(0) or |1|f(1)
       not better than two evaluations

     Quantum parallelism is an ingredient for speed up
    but we also need Algorithm interference: a way of constructively interfering the paths such that the desired information is amplified, and the information we do not care about becomes inaccessible

  • Second try:

    • |x
      |y=|=12(|0|1)
    • Uf|x|=(1)f(x)|x|
    • Again |x=|+
    • Uf|+|=12((1)f(0)|0+(1)f(1)|1)|

    {if f(0)=f(1)Uf|+|=(±1)|+|if f(0)f(1)Uf|+|=(±1)||

    Information f is constant or balanced is now encoded in the first qubit
    Information f(0) and f(1) is now as global phase factor ±1
    , which are inaccessible

    • Final step: measure the first qubit in X-basis
      {f is constant |+ with probability 1f is balanced | with probability 1
  • Quantum circuit implementing Deutsch’s algorithm.


Readings
Nielsen and Chuang
1.4.3 Deutsch’s algorithm

留言

這個網誌中的熱門文章