[Quantum Information] Universality of quantum gates

 Universality of quantum gates


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Müller, Markus

Universality

  • Entanglement


    • |00C1NOT2,H112(|00+|11)=|Φ+
    • |01C1NOT2,H112(|01+|10)=|Ψ+
    • |10C1NOT2,H112(|00|11)=|Φ
    • |11C1NOT2,H112(|01|10)=|Ψ
  • Bell state are equivalent up to local unitary operations
    • |Ψ+=X1|Φ+=X2|Φ+
    • |Φ=Z1|Φ+=Z2|Φ+

general property: Entanglement don’t change under local unitary operations.

  • 12(|00+i|10) also called Bell state: Local unitary equivalent
    with S1=(100i)

Universality of quantum gates

  • Classical:
    • {AND,NOT} and {NAND} are sets of classical logic gate universal for irreversible computing
    • {TOFFELI} is a universal 3-bit logic gate for reversible computing
  • Quantum computing: what are the minimal sets for n-qubit computation U?
    • T4=S2=Z
    • HZH=X
    • Y=iXZ

    H-gate and T-gate can generate X,Y,Z

  • Two-qubit
    • CNOT + arbitrary single rotation = universal gate set
    • example: {CNOT,H,T}
    • Proof:
      1. Arbitrary n-qubit gates can be decomposed into products of n-qubit unitary operations that act in a 2-dim subspace only.
        • decompose U into a product of {Vk}
          Vk=(11ab11cd11)
        • example: d=3
          U=(adgbehcfi),UU=I

          we will find V1,V2,V3 such that V3V2V1U=I
          (until decompose of U into 2-level unitary Vk)
          thus U=V3V2V1
        • if b=0, set V1=(100010001)
        • if b0, set V1=(a|a|2+|b|2b|a|2+|b|20b|a|2+|b|2a|a|2+|b|20001)

          V1 is a valid 2-level unitary.
        • for d=2n, we need to construct
          (d1) 2-level unitaries for the first column
          (d2) for the second column
        • U=V1V2...Vk
          kd(d1)2

        This is inefficient
        There exists matrices for which 2-level unitaries is needed

      2. arbitrary 2-level unitaries can be realized by CNOT-gate and single qubit rotations.
        • if
          Vk=(a0b010c0d)
        • Problem: Vk acts on the state, not a single qubit
        • Solution: Gray code that connects state |000 and |111
          • 000001011111
            all differs in one qubit only
          • different controlled-controlled-U (3-qubit):
            • applies U iff the first qubit is |0 and the second qubit is |1
            • applies X1 before and after controlled-controlled-U (flips |0 to |1)
      3. Arbitrary single-qubit rotation can be approximated by a finite set of single qubit gates, e.g. H and T gates
        • arbitrary single-qubit rotation can be built up from rotations about 2-axis
        • U=eiαRn(β)Rm(γ)Rn(δ)
          (can be built from Ry,Rz)



        • Solovay–Kitaev theorem
          A single-qubit gate U can be approximately to accuracy ε using O(log2(1/ε)) gates from the discrete gate set.
          Poly-logarithmic increase  growing very slow (not exponential increase in 1/ε)
  • overall resource count
    • for one 2-level unitary (d=2n), we need at most 2(n1) controlled operations Cn1(X) to implement a swap according to the gray code.
    • O(n) toffeli-gate
    • This amounts to O(n) single-qubit gates and CNOT gates.
    • We need O(4n) 2-level unitaries Vk to compose the n-qubit unitary U

Result: Implementation of an arbitrary n-qubit unitary U can be realized by a quantum circuit containing O(n24n) single qubit gates and CNOT operations.

n-qubit Pauli group

  • Pn={eiπk/2σj1...σjn|n=0,1,2,3 and jk=0,1,2,3}where σ0=I,σ1=X,σ2=Y,σ3=Z

n-qubit Clifford group

  • Cn={VPnV=Pn}
  • n=1 example:
    • Hadamard gate C1
      • HXH=Z,HXH=Z,HZH=X,HYH=Y
         the 16 elements of P1 are mapped onto P1
    • T gate C1
      • TXT=1/2(X+Y)P1
  • n=2 example:
    • CNOT gate C2
      • (C1NOT2)X1(C1NOT2)=X1X2
  • gottesman-knill theorem
    • Quantum circiuts of only Clifford gates can be perfectly simulated efficiently, i.e. in polynomial time, on classical computers.

Readings
Nielsen and Chuang
    4.3 Controlled operations

留言

這個網誌中的熱門文章