[Quantum Information] Universality of quantum gates
Universality of quantum gates
Notes from RWTH Aachen University course
“Quantum Information” Summer semester 2020
professor: Müller, Markus
Universality
- Entanglement
- \(|00\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=|\Phi^+\rangle\)
- \(|01\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=|\Psi^+\rangle\)
- \(|10\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=|\Phi^-\rangle\)
- \(|11\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=|\Psi^-\rangle\)
- Bell state are equivalent up to local unitary operations
- \(|\Psi^+\rangle=X_1|\Phi^+\rangle=X_2|\Phi^+\rangle\)
- \(|\Phi^-\rangle=Z_1|\Phi^+\rangle=Z_2|\Phi^+\rangle\)
general property: Entanglement don’t change under local unitary operations.
- \(\frac{1}{\sqrt{2}}(|00\rangle+i|10\rangle)\) also called Bell state: Local unitary equivalent
with \(S_1=\begin{pmatrix}1 & 0 \\ 0 & i\end{pmatrix}\)
Universality of quantum gates
- Classical:
- \(\{AND, NOT\}\) and \(\{NAND\}\) are sets of classical logic gate universal for irreversible computing
- \(\{TOFFELI\}\) is a universal 3-bit logic gate for reversible computing
- Quantum computing: what are the minimal sets for n-qubit computation \(U\)?
- \(T^4=S^2=Z\)
- \(HZH=X\)
- \(Y=iXZ\)
\(H\)-gate and \(T\)-gate can generate \(X,Y,Z\)
- Two-qubit
- CNOT + arbitrary single rotation = universal gate set
- example: \(\{CNOT,H,T\}\)
- Proof:
- Arbitrary \(n\)-qubit gates can be decomposed into products of \(n\)-qubit unitary operations that act in a 2-dim subspace only.
- decompose \(U\) into a product of \(\{V_k\}\)
\[V_k=\begin{pmatrix}1 & & & & & & & & & & \\& \ddots & & & & & & & & & \\& & 1 & & & & & & & & \\& & & a & & & & b & & & \\& & & & 1 & & & & & &\\& & & & & \ddots & & & & & \\& & & & & & 1 & & & & \\& & & c & & & & d & & & \\& & & & & & & & 1 & &\\& & & & & & & & & \ddots & & \\& & & & & & & & & & 1 \end{pmatrix}\] - example: \(d=3\)
\[U=\begin{pmatrix} a&d&g\\ b&e&h\\ c&f&i\end{pmatrix}, U^\dagger U=\mathbb{I}\]
we will find \(V_1,V_2,V_3\) such that \(V_3V_2V_1U=\mathbb{I}\)
(until decompose of \(U\) into \(2\)-level unitary \(V_k\))
thus \(U^\dagger =V_3V_2V_1\) - if \(b=0\), set \(V_1=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\)
- if \(b\neq 0\), set \[V_1=\begin{pmatrix} \frac{a^*}{\sqrt{|a|^2+|b|^2}}&\frac{b^*}{\sqrt{|a|^2+|b|^2}}&0\\ \frac{b}{\sqrt{|a|^2+|b|^2}}&\frac{-a}{\sqrt{|a|^2+|b|^2}}&0\\ 0&0&1\end{pmatrix}\]
\(V_1\) is a valid \(2\)-level unitary. - for \(d=2^n\), we need to construct
\((d-1)\) \(2\)-level unitaries for the first column
\((d-2)\) for the second column - \(U=V_1V_2...V_k\)
\[k\leq\frac{d(d-1)}{2}\]
This is inefficient
There exists matrices for which \(2\)-level unitaries is needed - decompose \(U\) into a product of \(\{V_k\}\)
- arbitrary \(2\)-level unitaries can be realized by \(CNOT\)-gate and single qubit rotations.
- if
\[V_k=\begin{pmatrix}a & 0 & \dots & b \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots\\ c & 0 & \dots & d\end{pmatrix}\] - Problem: \(V_k\) acts on the state, not a single qubit
- Solution: Gray code that connects state \(|000\rangle\) and \(|111\rangle\)
- \(000\rightarrow 001\rightarrow 011 \rightarrow 111\)
all differs in one qubit only - different controlled-controlled-\(U\) (\(3\)-qubit):
- applies \(U\) iff the first qubit is \(|0\rangle\) and the second qubit is \(|1\rangle\)
- applies \(X_1\) before and after controlled-controlled-\(U\) (flips \(|0\rangle\) to \(|1\rangle\))
- \(000\rightarrow 001\rightarrow 011 \rightarrow 111\)
- if
- Arbitrary single-qubit rotation can be approximated by a finite set of single qubit gates, e.g. \(H\) and \(T\) gates
- arbitrary single-qubit rotation can be built up from rotations about 2-axis
- \(U=e^{i\alpha} R_n(\beta) R_m(\gamma) R_n(\delta)\)
(can be built from \(R_y,R_z\)) - Solovay–Kitaev theorem
A single-qubit gate \(U\) can be approximately to accuracy \(\varepsilon\) using \(O(\log^2(1/\varepsilon))\) gates from the discrete gate set.
Poly-logarithmic increase \(\Rightarrow\) growing very slow (not exponential increase in \(1/\varepsilon\))
- Arbitrary \(n\)-qubit gates can be decomposed into products of \(n\)-qubit unitary operations that act in a 2-dim subspace only.
- overall resource count
- for one \(2\)-level unitary \((d=2^n)\), we need at most \(2(n-1)\) controlled operations \(C^{n-1}(X)\) to implement a swap according to the gray code.
- \(O(n)\) toffeli-gate
- This amounts to \(O(n)\) single-qubit gates and CNOT gates.
- We need \(O(4^n)\) \(2\)-level unitaries \(V_k\) to compose the \(n\)-qubit unitary \(U\)
Result: Implementation of an arbitrary \(n\)-qubit unitary \(U\) can be realized by a quantum circuit containing \(O(n^24^n)\) single qubit gates and CNOT operations.
\(n\)-qubit Pauli group
- \[P_n=\{e^{i\pi\cdot k/2}\sigma_{j_1}...\sigma_{j_n}|n=0,1,2,3\text{ and }j_k=0,1,2,3\}\\\text{where }\sigma_0=\mathbb{I},\sigma_1=X,\sigma_2=Y,\sigma_3=Z\]
\(n\)-qubit Clifford group
- \[C_n=\{V P_n V^\dagger=P_n\}\]
- \(n=1\) example:
- Hadamard gate \(\in C_1\)
- \(HXH^\dagger=Z,HXH^\dagger=Z,HZH^\dagger=X,HYH^\dagger=-Y\)
\(\Rightarrow\) the 16 elements of \(P_1\) are mapped onto \(P_1\)
- \(HXH^\dagger=Z,HXH^\dagger=Z,HZH^\dagger=X,HYH^\dagger=-Y\)
- T gate \(\notin C_1\)
- \(TXT^\dagger=1/\sqrt{2}(X+Y)\notin P_1\)
- Hadamard gate \(\in C_1\)
- \(n=2\) example:
- CNOT gate \(\in C_2\)
- \((C_1NOT_2)X_1(C_1NOT_2)=X_1X_2\)
- CNOT gate \(\in C_2\)
- gottesman-knill theorem
- Quantum circiuts of only Clifford gates can be perfectly simulated efficiently, i.e. in polynomial time, on classical computers.
Readings
Nielsen and Chuang
4.3 Controlled operations
留言
張貼留言