[Quantum Information] Entanglement processing

Entanglement processing


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten

Entanglement processing

  • Probability outcomes measuring distinguishable states  Information

  • Average information gain on state ρA for measurement in its eigenbasis
    S(ρA)=kλklog2(λk)

Majorization

  • least ordered (1d,...,1d)(1,0,...0) most ordered 
  • definition
    • λ: less ordered
    • μ: more ordered

  1. 1dnniλiniμi1

  2. λ=Dμ
    D is a doubly-stochastic matrix.

  3. λ=(πqπPπ)μ
    Pπ is a random permutation.


  • 🧐 Can one define entanglement operationally?

    • ⭕️

    ⭐️⭐️⭐️ Entanglement state =
    State that cannot be created using only local operations (LO) coordinated by classical communication (CC)

    ⭐️⭐️⭐️ Entanglement proccessing =
    modifying existing entanglement using only LOCC

⭐️⭐️⭐️ “More entangled” states have “less ordered” marginals and can be converted to “less entangled” states with “more ordered” marginals.

LOCC cannot increase entanglement rank

Entanglement Dilution

  • |e=12|00+12|11 Dilution |φ=23|00+13|11

    • POVM measurement
    • can be done with successful probability p1+p2=1
  • |e=23|00+13|11 Concentration |φ=12|00+12|11

    • POVM measurement
    • successful probability p1=23<1
  • majorization condition
    λ(ρ)=(23,13)  p1(12,12) + p2(1,0) = p1 λ(ρ1)+p2 λ(ρ2)
     p12/3p21/3 are indeed optimal.

⭐️⭐️⭐️ Single-copy conversion of pure entangled states is in general possible only for ensembles with some probabilities pk
|ψMk{pk,|ψk}λ(ρA)kpkλ(ρAk)

⭐️⭐️⭐️ LOCC quantum instrument = POVM + coarse graining
pk|ψkψk|=(MkI)|ψψ| POVMMk=ikMAikMAik coarse-graining

  • |e=23|00+13|11 Concentration |φ=12|00+12|11
    How can we do better?
    • by optimizing for n>1 copies we can increase conversion rate n=1n=
    • but not beyond the fundamental limit set by entanglement entropy
      S(ρ)=iλilog2(λi)
      where λi=1/3,2/3

Readings
Nielsen and Chuang (basic)
    • 12.5.1 Transforming bi-partite pure state entanglement
    • 12.5.2 Entanglement distillation and dilution
Cover and Thomas, Elements of information theory (basic)
    • 5.2 Kraft inequality
    • 5.3 Optimal codes
Wilde (basic)
    • 2.1 Data compression
Wilde (advanced)
    • 19 Entanglement Manipulation
Horodecki’s
    • XIII. Manipulations of entanglement and irreversibility
        A. LOCC manipulations on pure entangled states —exact case

留言

這個網誌中的熱門文章