[Quantum Information] Entanglement processing
Entanglement processing
Notes from RWTH Aachen University course
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten
Entanglement processing
Probability outcomes measuring distinguishable states ↔ Information
Average information gain on state ρA for measurement in its eigenbasis
S(ρA)=−∑kλklog2(λk)
Majorization
- least ordered (1d,...,1d)≺(1,0,...0) most ordered
- definition
- λ: less ordered
- μ: more ordered
1dn≤n∑iλi≤n∑iμi≤1
λ=D⋅μ
D is a doubly-stochastic matrix.λ=(∑πqπ⋅Pπ)⋅μ
Pπ is a random permutation.
🧐 Can one define entanglement operationally?
- ⭕️
⭐️⭐️⭐️ Entanglement state =
State that cannot be created using only local operations (LO) coordinated by classical communication (CC)⭐️⭐️⭐️ Entanglement proccessing =
modifying existing entanglement using only LOCC
⭐️⭐️⭐️ “More entangled” states have “less ordered” marginals and can be converted to “less entangled” states with “more ordered” marginals.
LOCC cannot increase entanglement rank
Entanglement Dilution
|e⟩=√12|00⟩+√12|11⟩ Dilution→ |φ⟩=√23|00⟩+√13|11⟩
- POVM measurement
- can be done with successful probability p1+p2=1
|e⟩=√23|00⟩+√13|11⟩ Concentration→ |φ⟩=√12|00⟩+√12|11⟩
- POVM measurement
- successful probability p1=23<1
majorization condition
λ(ρ)=(23,13) ≺ p1(12,12) + p2(1,0) = p1 λ(ρ1)+p2 λ(ρ2)
∴ p1≤2/3, p2≥1/3 are indeed optimal.
⭐️⭐️⭐️ Single-copy conversion of pure entangled states is in general possible only for ensembles with some probabilities pk
|ψ⟩Mk→{pk,|ψk⟩}⇔λ(ρA)≺∑kpkλ(ρAk)
⭐️⭐️⭐️ LOCC quantum instrument = POVM + coarse graining
pk|ψk⟩⟨ψk|=(Mk⊗I)|ψ⟩⟨ψ| POVMMk=∑i∈kMAik∙M†Aik coarse-graining
- |e⟩=√23|00⟩+√13|11⟩ Concentration→ |φ⟩=√12|00⟩+√12|11⟩
How can we do better? - by optimizing for n>1 copies we can increase conversion rate n=1→n=∞
- but not beyond the fundamental limit set by entanglement entropy
S(ρ)=−∑iλilog2(λi)
where λi=1/3,2/3
留言
張貼留言