[Quantum Information] POVM measurements

POVM measurements


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten

POVM

  • Effect operator Em discribes outcome of measurements without only neccesary restrictions Em0  pm0mEm=1  mpm=1
    • Effect operator Em: care about outcome pm
    • Measurement operator Mm: care about state |ψm


Effect operator Em

  •  Positivity ψ|Em|ψ0,  |ψ
  •  Sumrule mEm=1

Measurement operator MAb

  • operators on A:MAb=bB|UAB|0B
  • post-measurement states on AρAb=1pbMAbρAMAb
  • The measurement probability pb=trA(MAbρAMAb)=trA(MAbMAbρA)

    where EAb=MAbMAb

⭐️⭐️⭐️ A set of {EAb} is called a POVM for system A if EAb0bEAb=1A


⭐️⭐️⭐️ A set of measurement operators {MAb} is called a POVM-measurement if bMAbMAb=1A

  • EAb and MAb are not uniquely corresponding. MAb=VAbEAb

  • 🧐 Does a POVM-measurement {MAb} discribe a posterior states of general measurement?

    • ❌ A POVM-measurement is constrained to preserve purity.
    • It cannot describe decoherence of pure state to mixed post-measurement state.
  • 🧐 Does every POVM-measurement {MAb} derive from a pure, complete-measurement model (UAB,|0B)?

    • ⭕️ MAb=bB|UAB|0BUAB=bMAb|bB0B|+...
  • Nonuniqueness comes from

    • bB| UAB|cB
    • MAb=VAbEAb

  • Example:


    1. UAB=|0A0A|eitXB+|1A1A|eitXB
      • POVM-measurement operator: non-projective
        MA0=0B|UAB|0B=λ0IA(MA0)2
      • POVE effects: non-informative EA0=λ0IA independent of ρA

    2. UAB=|0A0A|IB+|1A1A|eitYB
      • POVM-measurement operator: non-projective
        MA0=|0A0A|+μ0|1A1A|(MA0)2
      • POVE effects: informative EA0=|0A0A|+μ0|1A1A|pA0=0A|ρA|0A+μ01A|ρA|1Aprobability depends of ρA informative
  • Example of POVM improvement:


    • pcertain=0.25

    • pcertain=12ε=0.293
      17% better than projective measurement

⭐️⭐️⭐️ Optimized POVM has better certainty than projective measurement!
i.e. more probability to measure with certainty (100%)

  • Pretty good measurement (PGM)
    • Ensemble {piρi} with full-rank marginal state ρ=ipiρi (all eigenvalues 0 ) has a canonical POVM called square-root measurement, or Pretty good measurement Ei=1ρpiρi1ρ

⭐️⭐️⭐️ Pretty good measurement: Optimized probability of detecting unknown state
POVM: detecting known state

  • 🧐 Can evolution in presence of coupling/correlation to an observed environment be reversed? i.e. DE(ρ)?=ρ,  ρ
    • ❌ No information without disturbance.

Readings
Nielsen and Chuang
 2.2.6 POVM measurements
 2.2.8 Composite systems
Preskill
 3.1 Orthogonal measurements and beyond
Wilde (advanced)
 4.2 Measurement in the Noisy Quantum Theory

留言

這個網誌中的熱門文章