[Quantum Information] Overview of Quantum Theory
Overview of Quantum Theory
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten
🧐 Isn’t information independent of its physical realization?
- ❌ We cannot think about information processing independent of its physical realization: underlying statistical model
🧐 Can we store infinitely more information already in a single quantum bit?
- ⁉️ Quantum states are not trivially accessible.
🧐 Can we copy information?
- ❌ by linearity of quantum physics.
No-cloning theorem
🧐 Can we communicate quantum information without copying?
- ⭕️ same by linearity of quantum physics
Quantum teleportation
🧐 What is non-classical about quantum states / information?
- ❎ measured outcome in \(Z\)-basis of \(1/\sqrt{2}(|01\rangle+|10\rangle)\) is fully (anti-)correlated \(\Rightarrow\) not the reason, because classical correlated state also happens
- \(|1_2\rangle\) happends when \(|0_1\rangle\) is measured
- ✅ \(A\) and \(B\) measure in arbitrary basis, outcome is still fully (anti-)correlated. \(\Rightarrow\) Not possible classically
Preparation
- vector \(|\psi\rangle\)
- probabilistic: Stochastic state = Probability vector
- open: Mixed states = Density operato
- complex Hilbert space
- \(\langle\psi|\psi\rangle=1\)
Evolution
- Unitary \(U\)
- probabilistic: Stochastic channel = Transition probability matrix
- open: Quantum channel
- \(U^\dagger U=UU^\dagger=\mathbb{I}\) \(\Rightarrow\) probability conservation
Conditioned Evolution
- open: Quantum instrument
Ovservation
- covector \(E_m\)
- probabilistic: Stochastic measurement = Conditional probability vector
- open: Mixing of measurements = Effect operator
- orthogonal projection on Hilbert subspace \(P_m=|\psi\rangle\langle\psi|=P_m^2\)
\[p_m=|\langle m|U|\psi\rangle|^2=\|P_mU|\psi\rangle\|^2\]
對 \(m\) 的measurement (測量 \(m\) 出現的機率)
\(\langle m | = P_m = |m\rangle\langle m|=P_m^2\)
- \[ |\psi\rangle = e^{i\varphi}|\psi\rangle\ \ \ \forall \varphi \in \mathbb{R} \]
相同 state 可以用不同 vector 表示
\(|\psi\rangle = i|\psi\rangle = -|\psi\rangle\)
Linear:
- \(\langle v|\)\(\alpha_1\)\(w_1+\)\(\alpha_2\)\(w_2\rangle=\)\(\alpha_1\)\(\langle v|w_1\rangle\)+\(\alpha_2\)\(\langle v|w_2\rangle\)
Anti-linear:
- \(\langle v|w\rangle^*=\langle w|v\rangle\)
- \(\langle\alpha_1\)\(w_1+\)\(\alpha_2\)\(w_2|v\rangle=\)\(\alpha_1^*\)\(\langle w_1|v\rangle\)+\(\alpha_2^*\)\(\langle w_2|v\rangle\)
Projection operator
\[\sum_i|i\rangle\langle i|=\mathbb{I}\]measurements
- Observable = Hermitian operator \(H=H^\dagger\)
- \(\Rightarrow\) has uniquely spectral decomposition
- \[M=\sum_i m_i |i\rangle\langle i|=\sum_i m_i P_i = \sum_m m P_m\]
- probability for outcome \(m\)
\[p_m=\langle\psi|P_m|\psi\rangle=\|P_m|\psi\rangle\|^2\] - post-measurement state for outcome \(m\)
\[|\psi_m\rangle=\frac{1}{\sqrt{p_m}}P_m|\psi\rangle\] - non-degenerate spectrum: measure specific \(m\)
degenerate spectrum: get expectation of all outcomes - example:
- Observable
\[Z=|0\rangle\langle 0|-|1\rangle\langle 1|=P_0-P_1\]- \(+1\) with eigenvector \(|0\rangle\)
\(-1\) with eigenvector \(|1\rangle\)
- \(+1\) with eigenvector \(|0\rangle\)
- measurement on \(|\psi\rangle=\alpha|0\rangle+\beta|1\rangle\)
\[\frac{P_0|\psi\rangle}{\|P_0|\psi\rangle\|}=\frac{\alpha}{|\alpha|}|0\rangle\sim|0\rangle\text{ with probability }\|P_0|\psi\rangle\|^2=|\alpha|^2 \\ \frac{P_1|\psi\rangle}{\|P_1|\psi\rangle\|}=\frac{\beta}{|\beta|}|1\rangle\sim|1\rangle\text{ with probability }\|P_1|\psi\rangle\|^2=|\beta|^2\]
- Observable
non-commuting measurements-quantum uncertainty
- \(Z\) and \(X\) cannot be measured simultaneously becasue they Fail to commute.
\[[Z,X]=2iY\]
Readings
Nielsen and Chuang
2.1-2.2.5 Introduction to quantum mechanics
1.2 Qubits
1.3 Quantum computation
Preskill
1 Introduction
Wilde (advanced)
3 The Noiseless Quantum Theory
留言
張貼留言