[Quantum Information] Overview of Quantum Theory

   Overview of Quantum Theory


Notes from RWTH Aachen University course 
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten

  • 🧐 Isn’t information independent of its physical realization?

    • ❌ We cannot think about information processing independent of its physical realization: underlying statistical model
  • 🧐 Can we store infinitely more information already in a single quantum bit?

    • ⁉️ Quantum states are not trivially accessible.
  • 🧐 Can we copy information?

    • ❌ by linearity of quantum physics.

    No-cloning theorem

  • 🧐 Can we communicate quantum information without copying?

    • ⭕️ same by linearity of quantum physics

    Quantum teleportation

  • 🧐 What is non-classical about quantum states / information?

    • ❎ measured outcome in Z-basis of 1/2(|01+|10) is fully (anti-)correlated  not the reason, because classical correlated state also happens
      • |12 happends when |01 is measured
    • ✅ A and B measure in arbitrary basis, outcome is still fully (anti-)correlated.  Not possible classically

Preparation

  • vector |ψ
    • probabilistic: Stochastic state = Probability vector
    • open: Mixed states = Density operato
    • complex Hilbert space
    • ψ|ψ=1

Evolution

  • Unitary U
    • probabilistic: Stochastic channel = Transition probability matrix
    • open: Quantum channel
    • UU=UU=I  probability conservation

Conditioned Evolution

  • open: Quantum instrument

Ovservation

  • covector Em
    • probabilistic: Stochastic measurement = Conditional probability vector
    • open: Mixing of measurements = Effect operator
    • orthogonal projection on Hilbert subspace Pm=|ψψ|=P2m
      pm=|m|U|ψ|2=PmU|ψ2

對 m 的measurement (測量 m 出現的機率)
m|=Pm=|mm|=P2m

  • |ψ=eiφ|ψ   φR

相同 state 可以用不同 vector 表示
|ψ=i|ψ=|ψ

  • Linear:

    • v|α1w1+α2w2=α1v|w1+α2v|w2
  • Anti-linear:

    • v|w=w|v
    • α1w1+α2w2|v=α1w1|v+α2w2|v
  • Projection operator
    i|ii|=I

  • measurements

    • Observable = Hermitian operator H=H
    •  has uniquely spectral decomposition
    • M=imi|ii|=imiPi=mmPm
    • probability for outcome m
      pm=ψ|Pm|ψ=Pm|ψ2
    • post-measurement state for outcome m
      |ψm=1pmPm|ψ
    • non-degenerate spectrum: measure specific m
      degenerate spectrum: get expectation of all outcomes
    • example:
      • Observable
        Z=|00||11|=P0P1
        • +1 with eigenvector |0
          1 with eigenvector |1
      • measurement on |ψ=α|0+β|1
        P0|ψP0|ψ=α|α||0|0 with probability P0|ψ2=|α|2P1|ψP1|ψ=β|β||1|1 with probability P1|ψ2=|β|2
  • non-commuting measurements-quantum uncertainty

    • Z and X cannot be measured simultaneously becasue they Fail to commute.
      [Z,X]=2iY

Readings
Nielsen and Chuang
 2.1-2.2.5 Introduction to quantum mechanics
 1.2 Qubits
 1.3 Quantum computation
Preskill
 1 Introduction
Wilde (advanced)
 3 The Noiseless Quantum Theory

留言

這個網誌中的熱門文章