[Quantum Information] Quantum Instruments
Quantum Instruments
Notes from RWTH Aachen University course
“Quantum Information” Summer semester 2020
professor: Wegewijs, Maarten
Measurement Quantum Instruments
- Linear map
- Hermicity-preserving map (HP)
- Completely-positive maps (CP)
-
Trace non-increasing (TNI) maps
\[\text{tr}_A\mathcal{M}_{Ab}(\rho_A)\leq\text{tr}_A \rho_A\]
\(\mathcal{E}_A\)\(=\sum_b\)\(\mathcal{M}_{Ab}\) is a quantum channel with trace-preserving (TP) instead of trace non-increasing (TNI).
-
🧐 Do measurement superoperators \(\{\mathcal{M}_b\}\) describe any measurement?
- ⭕️ Only two neccesary assumptions
-
Outcome \(b\) known:
valid state-update in presence of entanglement \(\Leftrightarrow\)
\[\mathcal{M}_{Ab}=\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger \text{(CP)}\\ \sum_{c\in b}M_{Abc}^\dagger M_{Abc}\leq \mathbb{1}_A\text{ (TNI)}\] -
Outcomes discarded:
Valid evolution in presence of entanglement \(\Leftrightarrow\)
\[\sum_b\mathcal{M}_{b}=\sum_b\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger=\mathcal{E} \text{ (CP)}\\ \sum_b\sum_{c\in b}M_{Abc}^\dagger M_{Abc}=\mathbb{1}_A\text{ (TP)}\]
-
This is not true for
-
POVM with \(\sum_bM_{Ab}^\dagger M_{Ab}=\mathbb{1}_A\)
- already assumes state-update to preserve purity
-
projective measurement
- further assumes that state-updates produce distinguishable states (orthogonal)
-
POVM with \(\sum_bM_{Ab}^\dagger M_{Ab}=\mathbb{1}_A\)
-
What post-measurement states can we get by coupling to an environment (B) in a pure state, measuring it and partially discarding outcomes?
- Partially discarding outcomes: Discarding information about distinctions between outcomes \(c\in b\) which form subsets \((b)\) of different sizes coarse-grainin
- 丟棄\(c\)與\(b\)的差異=使兩者相同方式計算
- Example: Qubits with ONB \(\{|1_B\rangle,|2_B\rangle,|3_B\rangle\}\)
- Coarse-graining \(\{1\}\) from \(\{2,3\}\)
- Discard distinctions from \(\{2,3\}\)
- relabeled \[\{|bc_B\rangle\}=\{|11_B\rangle\}_{b=1},\{|21_B\rangle,|22_B\rangle\}_{b=2}\]
-
measurement superoperator
- \[\mathcal{M}_{Ab}=\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger\\M_{Abc}=\langle bc_B|U_{ABC}|0_B\rangle\]
- post-measurement state \[\rho_{Ab}=\frac{1}{p_b}\mathcal{M}_{Ab}(\rho_{A})=\frac{1}{p_b}\sum_{c\in b}M_{Abc}\rho_{A} M_{Abc}^\dagger\]
- probability \[p_b=\text{tr}_A\mathcal{M}_{Ab}(\rho_{A})=\text{tr}_A\sum_{c\in b}M_{Abc}\rho_{A} M_{Abc}^\dagger\]
-
\(\mathcal{M}_{Ab}=\)\(\sum_{c\in b}\)\(M_{Abc}\bullet M_{Abc}^\dagger\)
This cannot describe by any POVM-measurements \(\mathcal{M}_{Ab}=M_{Ab}\bullet M_{Ab}^\dagger\) -
incomplete measurement model with composite environment
- 3 systems \(A,B,C\)
- \(B,C\) initially pure (possibly entangled)
- Local complete projective measurement \(\{\mathbb{1}_A\otimes|b_Bc_C\rangle\langle b_Bc_C|\}\)
- commute \(b\) with \(A\)
-
discard \(c\)
\[p_b=\text{tr}_A\sum_c \text{tr}_{BC}\{\bullet\}\\ \rho_{Ab}=\frac{1}{p_b}\sum_c \text{tr}_{BC}\{\bullet\}\]
⭐️⭐️⭐️ This model is better than POVM
\(U_{ABC}=\mathbb{S}_{AB}\otimes\mathbb{1}_C\), \(\mathbb{S}\) is a swap operator.
Example
Maximally depolarizing channel:Probabilities for outcome c and outcome b are statistically independent
Post-POVM-measurement state depends only on control bit c, not b or \(\rho\)
Axioms quantum theory (open system version)
-
Preparation state
\[\rho\geq 0, \text{ tr}\rho=1\] -
Evolution CP-TP maps
\[\mathcal{E}\rho=\sum_b M_b\rho M_b^\dagger\\ \sum_b M_b^\dagger M_b=\mathbb{1}\] -
Measurement instrument CP, TNI maps
\[p_b\rho_b=\sum_{c\in b} M_{bc}\rho M_{bc}^\dagger\stackrel{POVM}{=}M_b\rho M_b^\dagger\\ \sum_b\sum_{c\in b} M_{bc}\rho M_{bc}^\dagger=\mathbb{1}\stackrel{POVM}{=}\sum_bM_b\rho M_b^\dagger\]
Measurement effects
\[p_b=\text{tr}(E_b\rho_b)\\ E_b=\sum_{c\in b}M_{bc}^\dagger M_{bc}\stackrel{POVM}{=}M_{bc}^\dagger M_{bc}\\\sum_b E_b=\mathbb{1}\]
⭐️⭐️⭐️ POVM measurements are not general
Because it assumes max. information conservation (assume pure states) in evolution process
\(\rightarrow\) Incomplete information requires more general state-updates
⭐️⭐️⭐️ POVM measurements are fundamental
Every measurement can be simulated by POVM measurement \(\{M_{Abc}\}\) by discarding information \((\sum_{c\in b})\)
\(\rightarrow\) Incomplete information allows effect description for probability functions
- 🧐 Are there non-unitary evolution \(\mathcal{E}\) that are physically reversible? i.e. whose mathematical inverse on all states is also a CP-TP map?
- ❌ Reversibility of non-unitary evolution would violate no information without measurement disturbance.
留言
張貼留言